Mining Frequent Item Sets with Convertible Constraints
نویسندگان
چکیده
Recent work has highlighted the importance of the constraint-based mining paradigm in the context of frequent itemsets, associations, correlations, sequential patterns, and many other interesting patterns in large databases. In this paper, we study constraints which cannot be handled with existing theory and techniques. For example, , , ( can contain items of arbitrary values) "!$# %'&)( , are customarily regarded as “tough” constraints in that they cannot be pushed inside an algorithm such as Apriori. We develop a notion of convertible constraints and systematically analyze, classify, and characterize this class. We also develop techniques which enable them to be readily pushed deep inside the recently developed FP-growth algorithm for frequent itemset mining. Results from our detailed experiments show the effectiveness of the techniques developed.
منابع مشابه
Pushing Tougher Constraints in Frequent Pattern Mining
In this paper we extend the state-of-art of the constraints that can be pushed in a frequent pattern computation. We introduce a new class of tough constraints, namely Loose Anti-monotone constraints, and we deeply characterize them by showing that they are a superclass of convertible anti-monotone constraints (e.g. constraints on average or median) and that they model tougher constraints (e.g....
متن کاملA Novel Approach for finding Frequent Item Sets with Hybrid Strategies
Frequent item sets mining plays an important role in association rules mining. Over the years, a variety of algorithms for finding frequent item sets in very large transaction databases have been developed. Therefore, a number of methods have been proposed recently to discover approximate frequent item sets. This paper proposes an efficient SMine (Sorted Mine) Algorithm for finding frequent ite...
متن کاملComparison of Frequent Item Set Mining Algorithms
Frequent item sets mining plays an important role in association rules mining. Over the years, a variety of algorithms for finding frequent item sets in very large transaction databases have been developed. The main focus of this paper is to analyze the implementations of the Frequent item set Mining algorithms such as SMine and Apriori Algorithms. General Terms-Data Mining, Frequent Item sets,...
متن کاملMining Frequent Sequential Patterns under a Similarity Constraint
Many practical applications are related to frequent sequential pattern mining, ranging from Web Usage Mining to Bioinformatics. To ensure an appropriate extraction cost for useful mining tasks, a key issue is to push the user-defined constraints deep inside the mining algorithms. In this paper, we study the search for frequent sequential patterns that are also similar to an user-defined referen...
متن کاملAn efficient hash based algorithm for mining closed frequent item sets
Association rule discovery has emerged as an important problem in knowledge discovery and data mining. The association mining task consists of identifying the frequent item sets, and then forming conditional implication rules among them. Efficient algorithms to discover frequent patterns are crucial in data mining research. Finding frequent item sets is computationally the most expensive step i...
متن کامل